Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human land use and non-native fish species erode ecosystem services by changing community size structure

Abstract

Organism body size influences ecosystem services, and human pressures alter the size structure of ecological communities. However, our understanding of how different human-induced pressures (such as land use and biotic invasion) interact to drive community size structure and ecosystem services remains limited. Combining 21 years of fish size spectrum data and fishery potential (fishery monetary value in the Upper Paraná River Floodplain, Brazil), we demonstrate that the size spectrum exponent of native species has become more negative over time, indicating a relative decrease in the biomass of large versus small individuals. Conversely, the size spectrum exponent of non-native species has become less negative over time owing to the increased abundance of large species. Overall, fishery potential declined by more than 50% over time. Human land use replaced the coverage of natural environments, indirectly reducing native richness. This scenario decreased the exponent of the native size spectrum, indirectly reducing fishery potential. Our study illustrates how intensification of human land use alters the size structure of communities, favouring non-native individuals and suppressing ecosystem services.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sampling stations, annual trends in land-use types, and mean richness and biomass of native and non-native fish species.
Fig. 2: Annual trends in size spectrum exponents and fishery potential across floodplain environments.
Fig. 3: Temporal changes in the relationship between native fish and whole-community and non-native size spectrum exponents across floodplain environments.
Fig. 4: Cascading effects of human land use on the fishery potential of floodplain environments.
Fig. 5: Relationship between size spectrum exponents and ecosystem service across floodplain environments.

Similar content being viewed by others

Data availability

The raw data that support the findings of this study are publicly available via figshare at https://doi.org/10.6084/m9.figshare.27252201 (ref. 75). Source data are provided with this paper.

Code availability

The code that supports the findings of this study is publicly available via figshare at https://doi.org/10.6084/m9.figshare.27252201 (ref. 75).

References

  1. Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Google Scholar 

  2. Brose, U. et al. Predicting the consequences of species loss using size-structured biodiversity approaches. Biol. Rev. 92, 684–697 (2017).

    PubMed  Google Scholar 

  3. Jochum, M. et al. For flux’s sake: general considerations for energy-flux calculations in ecological communities. Ecol. Evol. 19, 12948–12969 (2021).

    Google Scholar 

  4. Enquist, B. J., Abraham, A. J., Harfoot, M. B. J., Malhi, Y. & Doughty, C. E. The megabiota are disproportionately important for biosphere functioning. Nat. Commun. 11, 699 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Oke, K. B. et al. Recent declines in salmon body size impact ecosystems and fisheries. Nat. Commun. 11, 4155 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Blanchet, S. et al. Non-native species disrupt the worldwide patterns of freshwater fish body size: implications for Bergmann’s rule. Ecol. Lett. 13, 421–431 (2010).

    PubMed  Google Scholar 

  7. Merckx, T. et al. Body-size shifts in aquatic and terrestrial urban communities. Nature 558, 113–116 (2018).

    CAS  PubMed  Google Scholar 

  8. Collyer, G., Perkins, D. M., Petsch, D. K., Siqueira, T. & Saito, V. Land-use intensification systematically alters the size structure of aquatic communities in the Neotropics. Glob. Change Biol. 29, 4094–4106 (2023).

    CAS  Google Scholar 

  9. Pott, C. M., Dala-Corte, R. B. & Becker, F. G. Body size responses to land use in stream fish: the importance of different metrics and functional groups. Neotrop. Ichthyol. 19, e210004 (2021).

    Google Scholar 

  10. Moi, D. A. et al. Human land-uses homogenize stream assemblages and reduce animal biomass production. J. Anim. Ecol. 92, 1176–1189 (2023).

    PubMed  Google Scholar 

  11. Raffaelli, D. How extinction patterns affect ecosystems. Science 306, 1141–1142 (2004).

    PubMed  Google Scholar 

  12. Potapov, A. M. et al. Rainforest transformation reallocates energy from green to brown food webs. Nature 627, 116–122 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Moi, D. A. et al. Long-term changes in multi-trophic diversity alter the functioning of river food webs. Funct. Ecol. 38, 1739–1750 (2024).

    CAS  Google Scholar 

  14. Arranz, I., Grenouillet, G. & Cucherousset, J. Human pressures modulate climate warming-induced changes in size spectra of stream fish communities. Nat. Ecol. Evol. 7, 1072–1078 (2023).

    PubMed  Google Scholar 

  15. Arranz, I., Grenouillet, G. & Cucherousset, J. Biological invasions and eutrophication reshape the spatial patterns of stream fish size spectra in France. Div. Dist. 29, 590–597 (2023).

    Google Scholar 

  16. White, E. P., Ernest, S. K. M., Kerkhoff, A. J. & Enquist, B. J. Relationships between body size and abundance in ecology. Trend Ecol. Evol. 22, 323–330 (2007).

    Google Scholar 

  17. Robinson, J. P. W. et al. Fishing degrades size structure of coral reef fish communities. Glob. Change Biol. 23, 1009–1022 (2016).

    Google Scholar 

  18. Marin, V., Arranz, I., Grenouillet, G. & Cucherousset, J. Fish size spectrum as a complementary biomonitoring approach of freshwater ecosystems. Ecol. Indic. 146, 109833 (2023).

    Google Scholar 

  19. Cumming, G. S. et al. Implications of agricultural transitions and urbanization for ecosystem services. Nature 515, 50–57 (2014).

    CAS  PubMed  Google Scholar 

  20. Gallardo, B. et al. Risks posed by invasive species to the provision of ecosystem services in Europe. Nat. Commun. 15, 2631 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Food and Agriculture Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture (FAO, 2022).

  22. Lauber, T. B. et al. The effects of aquatic invasive species on recreational fishing participation and value in the Great Lakes: possible future scenarios. J. Great Lakes Res. 46, 656–665 (2020).

    Google Scholar 

  23. Kao, Y.-C. et al. Effects of climate and land-use changes on fish catches across lakes at a global scale. Nat. Commun. 11, 2526 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cuthbert, R. N. et al. Global economic costs of aquatic invasive alien species. Sci. Total Environ. 775, 145238 (2021).

    CAS  PubMed  Google Scholar 

  25. Dugan, P. et al. Blue Harvest: Inland Fisheries as an Ecosystem Service (UNEP, World Fish Center, 2010).

  26. Mayers, N. et al. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    Google Scholar 

  27. Britton, J. R. & Orsi, M. L. Non-native fish in aquaculture and sport fishing in Brazil: economic benefits versus risks to fish diversity in the upper River Paraná Basin. Rev. Fish Biol. Fish. 22, 555–565 (2012).

    Google Scholar 

  28. Pelicice, F. M. et al. Ecosystem services generated by neotropical freshwater fishes. Hydrobiologia 850, 2903–2926 (2023).

    Google Scholar 

  29. Sprules, W. G. & Barth, L. E. Surfing the biomass size spectrum: some remarks on history, theory, and application. Can. J. Fish. Aquat. Sci. 73, 477–495 (2015).

    Google Scholar 

  30. Coghlan, A. R. et al. Mean reef fish body size decreases towards warmer waters. Ecol. Lett. 27, e14375 (2024).

    PubMed  Google Scholar 

  31. Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    CAS  PubMed  Google Scholar 

  32. Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 266, eaax3100 (2019).

    Google Scholar 

  33. Hanley, N. & Roberts, M. The economic benefits of invasive species management. People Nat. 1, 124–137 (2019).

    Google Scholar 

  34. Su, G. et al. Human impacts on global freshwater fish biodiversity. Science 371, 835–838 (2021).

    CAS  PubMed  Google Scholar 

  35. Moi, D. A. & Teixeira de Mello, F. Non-native fishes homogenize native fish communities and reduce ecosystem multifunctionality in tropical lakes over 16 years. Sci. Total Environ. 769, 144524 (2021).

    CAS  PubMed  Google Scholar 

  36. Villéger, S., Blanchet, S., Beauchard, O., Oberdorff, T. & Brosse, S. Homogenization patterns of the world’s freshwater fish faunas. Proc. Natl Acad. Sci. USA 108, 18003–18008 (2011).

    PubMed  PubMed Central  Google Scholar 

  37. Danet, A., Giam, X., Olden, J. D. & Comte, L. Past and recent anthropogenic pressures drive rapid changes in riverine fish communities. Nat. Ecol. Evol. 8, 442–453 (2024).

    PubMed  PubMed Central  Google Scholar 

  38. Felipe-Lucia, M. R. et al. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proc. Natl Acad. Sci. USA 117, 28140–28149 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Moi, D. A. et al. Human pressure drives biodiversity–multifunctionality relationships in large Neotropical wetlands. Nat. Ecol. Evol. 6, 1279–1289 (2022).

    PubMed  Google Scholar 

  40. Arantes, C. C. et al. Floodplain land cover affects biomass distribution of fish functional diversity in the Amazon River. Sci. Rep. 9, 16684 (2019).

    PubMed  PubMed Central  Google Scholar 

  41. Perkins, D. M. et al. Bending the rules: exploitation of allochthonous resources by a top-predator modifies size-abundance scaling in stream food webs. Ecol. Lett. 21, 1771–1780 (2018).

    PubMed  Google Scholar 

  42. González-Bergonzoni, I. et al. Origin of fish biomass in a diverse subtropical river: an allochthonic supported biomass increase following flood pulses. Ecosystems 22, 1736–1753 (2019).

    Google Scholar 

  43. Agostinho, A. A., Gomes, L. C., Veríssimo, S. & Okada, E. K. Flood regime, dam regulation and fish in the Upper Paraná River: effects on assemblage attributes, reproduction and recruitment. Rev. Fish Biol. Fish. 14, 11–19 (2004).

    Google Scholar 

  44. Agostinho, A. A., Pelicice, F. M., Petry, A. C., Gomes, L. C. & Júlio, H. F. Jr Fish diversity in the upper Paraná River basin: habitats, fisheries, management and conservation. Aquat. Ecosyst. Health Manag. 10, 174–186 (2007).

    Google Scholar 

  45. Rudke, A. P. et al. Landscape changes over 30 years of intense economic activity in the upper Paraná River basin. Ecol. Inform. 72, 101882 (2022).

    Google Scholar 

  46. Miiller, N. O. R., Cunico, A. M., Gubiani, E. A. & Piana, P. A. Functional responses of stream fish communities to rural and urban land uses. Neotrop. Ichthyol. 19, e200134 (2021).

    Google Scholar 

  47. Anas, M. U. M. & Mandrak, N. E. Drivers of native and non‐native freshwater fish richness across North America: disentangling the roles of environmental, historical and anthropogenic factors. Glob. Ecol. Biogeogr. 30, 1232–1244 (2021).

    Google Scholar 

  48. Bernery, C. et al. Freshwater fish invasions: a comprehensive review. Annu. Rev. Ecol. Evol. Syst. 53, 427–456 (2022).

    Google Scholar 

  49. Olden, J. D., Poff, N. L. & Bestgen, K. R. Life-history strategies predict fish invasions and extirpations in the Colorado River Basin. Ecol. Monogr. 76, 25–40 (2006).

    Google Scholar 

  50. Tonella, L. H. et al. Importance of feeding strategies on the long-term success of fish invasions. Hydrobiologia 817, 239–252 (2018).

    Google Scholar 

  51. Arim, M. et al. Food web structure and body size: trophic position and resource acquisition. Oikos 119, 147–153 (2010).

    Google Scholar 

  52. Le Bourlot, V., Tully, T. & Claessen, D. Interference versus exploitative competition in the regulation of size-structured populations. Am. Nat. 184, 609–623 (2014).

    PubMed  Google Scholar 

  53. Yofukuji, K. Y., Cardozo, A. L. P., Schmitz, M. H. & Fugi, R. Effects of the intensity of land‑use changes on taxonomic and functional diversity of fish in a Neotropical floodplain. Aquat. Sci. 85, 48 (2023).

    Google Scholar 

  54. Vellend, D. F. The biodiversity conservation paradox. Am. Sci. 105, 94–101 (2017).

    Google Scholar 

  55. Edwards, A. M. et al. Testing and recommending methods for fitting size spectra to data. Methods Ecol. Evol. 8, 57–67 (2017).

    Google Scholar 

  56. Ota, R. R., Deprá, G. C., Graça, W. J. & Pavanelli, C. S. Peixes da planície de inundação do alto rio Paraná e áreas adjacentes: revised, annotated and updated. Neotrop. Ichthyol. 16, e170094 (2018).

    Google Scholar 

  57. Hsieh, T. C. & Chao, M. A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Google Scholar 

  58. Shoup, D. E. & Ryswyk, R. G. Length selectivity and size-bias correction for the North American standard gill net. N. Am. J. Fish. Manag. 36, 485–496 (2016).

    Google Scholar 

  59. Guiet, J., Poggiale, J.-C. & Maury, O. Modelling the community size-spectrum: recent developments and new directions. Ecol. Model. 337, 4–14 (2016).

    Google Scholar 

  60. Instituto Brasileiro de Geografia e Estatística (IBGE). IPCAExtended National Consumer Price Index (IBGE, 2024); www.ibge.gov.br/en/statistics/economic/prices-and-costs/17129-extended-national-consumer-price-index.html?lang=en-GB

  61. Marques, M. C. M., Trindade, W., Bohn, A. & Grelle, C. E. V. in The Atlantic Forest: History, Biodiversity, Threats and Opportunities of the Mega-Diverse Forest (eds Marques, M. C. M. & Grelle, C. E. V.) 3–24 (Springer, 2021).

  62. Rezende, C. L. et al. From hotspot to hopespot: an opportunity for the Brazilian Atlantic Forest. Perspect. Ecol. Conserv. 16, 208–214 (2018).

    Google Scholar 

  63. Souza, C. M. et al. Reconstructing three decades of land use and land cover changes in Brazilian biomes with landsat archive and earth engine. Remote Sens. 12, 2735 (2020).

    Google Scholar 

  64. Molina, M. C., Roa-Fuentes, C. A., Zeni, J. O. & Casatti, L. The effects of land use at different spatial scales on instream features in agriculture streams. Limnological 65, 14–21 (2017).

    Google Scholar 

  65. Aldwaik, S. Z. & Pontius, R. G. Intensity analysis to unify measurements of size and stationarity of land changes by interval, category, and transition. Landsc. Urban Plan. 106, 103–114 (2012).

    Google Scholar 

  66. Exavier, R. & Zeilhofer, P. Openland: quantitative analysis and visualization of LUCC. R package v. 1.0.1. CRAN https://cran.r-project.org/package=openland (2020).

  67. Wood, S. & Scheipl, F. Generalized additive mixed models using ‘mgcv’ and ‘lme4’. R package v.1.9-3. CRAN https://cran.r-project.org/web/packages/gamm4/gamm4.pdf (2025).

  68. Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Google Scholar 

  69. Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).

    Google Scholar 

  70. Lefcheck, J. S. piecewiseSEM: piecewise, structural equation modelling in R for ecology, evolution and systematics. Method. Ecol. Evol. 7, 573–579 (2016).

    Google Scholar 

  71. Pelicice, F. M. et al. Human impacts and the loss of Neotropical freshwater fish diversity. Neotrop. Ichthyol. 19, e210134 (2021).

    Google Scholar 

  72. Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package v.0.4.6. CRAN https://cran.r-project.org/package=dharma (2022).

  73. Lüdecke, D., Ben-Shachar, S., Patil, I., Waggoner, P. & Makowski, D. performance: an R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139 (2021).

    Google Scholar 

  74. R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2024).

  75. Moi, D. Human land-use and non-native species erode ecosystem services by changing community size structure. figshare https://doi.org/10.6084/m9.figshare.27252201 (2025).

Download references

Acknowledgements

This study was funded by the Brazilian Long-Term Ecological Research Program (PELD-PIAP/CNPq). D.A.M. received a postdoctoral grant from FAPESP (Process Number 2022/13301-8). V.S. and D.M.P. were supported by Royal Society Newton Mobility Grant NMG\R1\201121. V.S. was supported by FAPESP (Process Number 2022/01452-1) during the writing of this study. G.Q.R. was supported by FAPESP (grants 2019/08474-8, 2022/10765-3 and 2023/01589-0) and by a CNPq-Brazil productivity grant and, together with P.K., was funded by the Royal Society, Newton Advanced Fellowship (grant NAF/R2/180791). P.K. was supported by an NERC Pushing the Frontiers grant (NE/Y001184/1). F.T.M. and M.B.G. are supported by SNI-ANII (Sistema Nacional de investigadores), and F.T.M. received financial support from Geosciencias and Biología (Programa de Desarrollo de las Ciencias Básicas). A.A.A., C.C.B., B.R.S.F. and R.P.M. are productivity researchers receiving grants from CNPq.

Author information

Authors and Affiliations

Authors

Contributions

Authors are listed in order of contribution. D.A.M., V.S. and G.Q.R. developed the original ideas presented in the manuscript. A.A.A., C.C.B. and R.P.M. coordinated all the field operations. Land-use cover calculations were performed by M.H.S. B.A.Q. performed size spectrum data compilation. D.A.M. and V.S. performed the statistical analysis. D.A.M. wrote the first draft of the paper, and further drafts were written by D.A.M., V.S., B.A.Q., D.C.A., A.A.A., M.H.S., C.C.B., M.B., P.K., D.M.P., F.T.M., B.R.S.F., R.P.M., E.K.O. and G.Q.R. G.Q.R. supervised the study and is the senior author.

Corresponding author

Correspondence to Dieison A. Moi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Max Lindmark, Taylor Woods and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs 1–15, Tables 1–6 and model diagnostic plots.

Reporting Summary

Peer Review File

Source data

Source Data Fig. 1

Statistical source data: temporal change in land-use cover, fish richness and fish biomass in the Upper Paraná floodplain environments.

Source Data Fig. 2

Statistical source data: temporal change in the size spectrum exponent of native species, the whole community and non-native species, and in fishery potential in the Upper Paraná floodplain environments.

Source Data Fig. 3

Statistical source data: temporal change in the relationship between the size spectrum exponent of native species and the size spectrum exponent of the whole community and non-native species in the Upper Paraná floodplain environments.

Source Data Fig. 4

Statistical source data: SEM results.

Source Data Fig. 5

Statistical source data: relationship of the size spectrum exponent of native and non-native species with fishery potential in the Upper Paraná floodplain environments.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moi, D.A., Saito, V.S., Quirino, B.A. et al. Human land use and non-native fish species erode ecosystem services by changing community size structure. Nat Ecol Evol 9, 801–809 (2025). https://doi.org/10.1038/s41559-025-02696-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-025-02696-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing