RamaLama is an open-source tool that simplifies the local use and serving of AI models for inference from any source through the familiar approach of containers.
RamaLama strives to make working with AI simple, straightforward, and familiar by using OCI containers.
RamaLama is an open-source tool that simplifies the local use and serving of AI models for inference from any source through the familiar approach of containers. Using a container engine like Podman, engineers can use container-centric development patterns and benefits to extend to AI use cases.
RamaLama eliminates the need to configure the host system by instead pulling a container image specific to the GPUs discovered on the host system, and allowing you to work with various models and platforms.
- Eliminates the complexity for users to configure the host system for AI.
- Detects and pulls an accelerated container image specific to the GPUs on the host system, handling dependencies and hardware optimization.
- RamaLama supports multiple AI model registries, including OCI Container Registries.
- Models are treated similarly to how Podman and Docker treat container images.
- Use common container commands to work with AI models.
- Run AI models securely in rootless containers, isolating the model from the underlying host.
- Keep data secure by defaulting to no network access and removing all temporary data on application exits.
- Interact with models via REST API or as a chatbot.
Accelerator | Image |
---|---|
CPU, Apple | quay.io/ramalama/ramalama |
HIP_VISIBLE_DEVICES | quay.io/ramalama/rocm |
CUDA_VISIBLE_DEVICES | quay.io/ramalama/cuda |
ASAHI_VISIBLE_DEVICES | quay.io/ramalama/asahi |
INTEL_VISIBLE_DEVICES | quay.io/ramalama/intel-gpu |
ASCEND_VISIBLE_DEVICES | quay.io/ramalama/cann |
On first run, RamaLama inspects your system for GPU support, falling back to CPU if none are present. RamaLama uses container engines like Podman or Docker to pull the appropriate OCI image with all necessary software to run an AI Model for your system setup.
How does RamaLama select the right image?
After initialization, RamaLama runs AI Models within a container based on the OCI image. RamaLama pulls container images specific to the GPUs discovered on your system. These images are tied to the minor version of RamaLama.
- For example, RamaLama version 1.2.3 on an NVIDIA system pulls quay.io/ramalama/cuda:1.2. To override the default image, use the
--image
option.
RamaLama then pulls AI Models from model registries, starting a chatbot or REST API service from a simple single command. Models are treated similarly to how Podman and Docker treat container images.
Hardware | Enabled |
---|---|
CPU | ✓ |
Apple Silicon GPU (Linux / Asahi) | ✓ |
Apple Silicon GPU (macOS) | ✓ |
Apple Silicon GPU (podman-machine) | ✓ |
Nvidia GPU (cuda) | ✓ See note below |
AMD GPU (rocm) | ✓ |
Ascend NPU (Linux) | ✓ |
Intel ARC GPUs (Linux) | ✓ See note below |
On systems with NVIDIA GPUs, see ramalama-cuda documentation for the correct host system configuration.
The following Intel GPUs are auto-detected by RamaLama:
GPU ID | Description |
---|---|
0xe20b |
Intel® Arc™ B580 Graphics |
0xe20c |
Intel® Arc™ B570 Graphics |
0x7d51 |
Intel® Graphics - Arrow Lake-H |
0x7dd5 |
Intel® Graphics - Meteor Lake |
0x7d55 |
Intel® Arc™ Graphics - Meteor Lake |
See the Intel hardware table for more information.
RamaLama is available in Fedora 40 and later. To install it, run:
sudo dnf install python3-ramalama
RamaLama is available via PyPi at https://pypi.org/project/ramalama
pip install ramalama
Install RamaLama by running:
curl -fsSL https://raw.githubusercontent.com/containers/ramalama/s/install.sh | bash
When both Podman and Docker are installed, RamaLama defaults to Podman. The RAMALAMA_CONTAINER_ENGINE=docker
environment variable can override this behaviour. When neither are installed, RamaLama will attempt to run the model with software on the local system.
Because RamaLama defaults to running AI models inside rootless containers using Podman or Docker, these containers isolate the AI models from information on the underlying host. With RamaLama containers, the AI model is mounted as a volume into the container in read-only mode.
This results in the process running the model (llama.cpp or vLLM) being isolated from the host. Additionally, since ramalama run
uses the --network=none
option, the container cannot reach the network and leak any information out of the system. Finally, containers are run with the --rm
option, which means any content written during container execution is deleted when the application exits.
- Container Isolation – AI models run within isolated containers, preventing direct access to the host system.
- Read-Only Volume Mounts – The AI model is mounted in read-only mode, which means that processes inside the container cannot modify the host files.
- No Network Access – ramalama run is executed with
--network=none
, meaning the model has no outbound connectivity for which information can be leaked. - Auto-Cleanup – Containers run with
--rm
, wiping out any temporary data once the session ends. - Drop All Linux Capabilities – No access to Linux capabilities to attack the underlying host.
- No New Privileges – Linux Kernel feature that disables container processes from gaining additional privileges.
RamaLama supports multiple AI model registries types called transports.
Transports | Web Site |
---|---|
HuggingFace | huggingface.co |
Ollama | ollama.com |
OCI Container Registries | opencontainers.org |
Examples: quay.io , Docker Hub , Pulp , and Artifactory |
RamaLama uses the Ollama registry transport by default
How to change transports.
Use the RAMALAMA_TRANSPORT environment variable to modify the default. export RAMALAMA_TRANSPORT=huggingface
Changes RamaLama to use huggingface transport.
Individual model transports can be modified when specifying a model via the huggingface://
, oci://
, or ollama://
prefix.
Example:
ramalama pull huggingface://afrideva/Tiny-Vicuna-1B-GGUF/tiny-vicuna-1b.q2_k.gguf
To make it easier for users, RamaLama uses shortname files, which contain alias names for fully specified AI Models, allowing users to refer to models using shorter names.
More information on shortnames.
RamaLama reads shortnames.conf files if they exist. These files contain a list of name-value pairs that specify the model. The following table specifies the order in which RamaLama reads the files. Any duplicate names that exist override previously defined shortnames.
Shortnames type | Path |
---|---|
Distribution | /usr/share/ramalama/shortnames.conf |
Administrators | /etc/ramalama/shortnames.conf |
Users | $HOME/.config/ramalama/shortnames.conf |
$ cat /usr/share/ramalama/shortnames.conf
[shortnames]
"tiny" = "ollama://tinyllama"
"granite" = "huggingface://instructlab/granite-7b-lab-GGUF/granite-7b-lab-Q4_K_M.gguf"
"granite:7b" = "huggingface://instructlab/granite-7b-lab-GGUF/granite-7b-lab-Q4_K_M.gguf"
"ibm/granite" = "huggingface://instructlab/granite-7b-lab-GGUF/granite-7b-lab-Q4_K_M.gguf"
"merlinite" = "huggingface://instructlab/merlinite-7b-lab-GGUF/merlinite-7b-lab-Q4_K_M.gguf"
"merlinite:7b" = "huggingface://instructlab/merlinite-7b-lab-GGUF/merlinite-7b-lab-Q4_K_M.gguf"
...
-
Benchmark specified AI Model
$ ramalama bench granite-moe3
-
List all containers running AI Models
$ ramalama containers
Returns for example:
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES 85ad75ecf866 quay.io/ramalama/ramalama:latest /usr/bin/ramalama... 5 hours ago Up 5 hours 0.0.0.0:8080->8080/tcp ramalama_s3Oh6oDfOP 85ad75ecf866 quay.io/ramalama/ramalama:latest /usr/bin/ramalama... 4 minutes ago Exited (0) 4 minutes ago granite-server
-
List all containers in a particular format
$ ramalama ps --noheading --format "{{ .Names }}"
Returns for example:
ramalama_s3Oh6oDfOP granite-server
-
Generate an oci model out of an Ollama model.
$ ramalama convert ollama://tinyllama:latest oci://quay.io/rhatdan/tiny:latest
Returns for example:
Building quay.io/rhatdan/tiny:latest... STEP 1/2: FROM scratch STEP 2/2: COPY sha256:2af3b81862c6be03c769683af18efdadb2c33f60ff32ab6f83e42c043d6c7816 /model --> Using cache 69db4a10191c976d2c3c24da972a2a909adec45135a69dbb9daeaaf2a3a36344 COMMIT quay.io/rhatdan/tiny:latest --> 69db4a10191c Successfully tagged quay.io/rhatdan/tiny:latest 69db4a10191c976d2c3c24da972a2a909adec45135a69dbb9daeaaf2a3a36344
-
Generate and run an OCI model with a quantized GGUF converted from Safetensors.
Generate OCI model
$ ramalama --image quay.io/ramalama/ramalama-rag convert --gguf Q4_K_M hf://ibm-granite/granite-3.2-2b-instruct oci://quay.io/kugupta/granite-3.2-q4-k-m:latest
Returns for example:
Converting /Users/kugupta/.local/share/ramalama/models/huggingface/ibm-granite/granite-3.2-2b-instruct to quay.io/kugupta/granite-3.2-q4-k-m:latest... Building quay.io/kugupta/granite-3.2-q4-k-m:latest...
Run the generated model
$ ramalama run oci://quay.io/kugupta/granite-3.2-q4-k-m:latest
-
Info with no container engine.
$ ramalama info
Returns for example:
{ "Accelerator": "cuda", "Engine": { "Name": "" }, "Image": "quay.io/ramalama/cuda:0.7", "Runtime": "llama.cpp", "Shortnames": { "Names": { "cerebrum": "huggingface://froggeric/Cerebrum-1.0-7b-GGUF/Cerebrum-1.0-7b-Q4_KS.gguf", "deepseek": "ollama://deepseek-r1", "dragon": "huggingface://llmware/dragon-mistral-7b-v0/dragon-mistral-7b-q4_k_m.gguf", "gemma3": "hf://bartowski/google_gemma-3-4b-it-GGUF/google_gemma-3-4b-it-IQ2_M.gguf", "gemma3:12b": "hf://bartowski/google_gemma-3-12b-it-GGUF/google_gemma-3-12b-it-IQ2_M.gguf", "gemma3:1b": "hf://bartowski/google_gemma-3-1b-it-GGUF/google_gemma-3-1b-it-IQ2_M.gguf", "gemma3:27b": "hf://bartowski/google_gemma-3-27b-it-GGUF/google_gemma-3-27b-it-IQ2_M.gguf", "gemma3:4b": "hf://bartowski/google_gemma-3-4b-it-GGUF/google_gemma-3-4b-it-IQ2_M.gguf", "granite": "ollama://granite3.1-dense", "granite-code": "hf://ibm-granite/granite-3b-code-base-2k-GGUF/granite-3b-code-base.Q4_K_M.gguf", "granite-code:20b": "hf://ibm-granite/granite-20b-code-base-8k-GGUF/granite-20b-code-base.Q4_K_M.gguf", "granite-code:34b": "hf://ibm-granite/granite-34b-code-base-8k-GGUF/granite-34b-code-base.Q4_K_M.gguf", "granite-code:3b": "hf://ibm-granite/granite-3b-code-base-2k-GGUF/granite-3b-code-base.Q4_K_M.gguf", "granite-code:8b": "hf://ibm-granite/granite-8b-code-base-4k-GGUF/granite-8b-code-base.Q4_K_M.gguf", "granite-lab-7b": "huggingface://instructlab/granite-7b-lab-GGUF/granite-7b-lab-Q4_K_M.gguf", "granite-lab-8b": "huggingface://ibm-granite/granite-8b-code-base-GGUF/granite-8b-code-base.Q4_K_M.gguf", "granite-lab:7b": "huggingface://instructlab/granite-7b-lab-GGUF/granite-7b-lab-Q4_K_M.gguf", "granite:2b": "ollama://granite3.1-dense:2b", "granite:7b": "huggingface://instructlab/granite-7b-lab-GGUF/granite-7b-lab-Q4_K_M.gguf", "granite:8b": "ollama://granite3.1-dense:8b", "hermes": "huggingface://NousResearch/Hermes-2-Pro-Mistral-7B-GGUF/Hermes-2-Pro-Mistral-7B.Q4_K_M.gguf", "ibm/granite": "ollama://granite3.1-dense:8b", "ibm/granite:2b": "ollama://granite3.1-dense:2b", "ibm/granite:7b": "huggingface://instructlab/granite-7b-lab-GGUF/granite-7b-lab-Q4_K_M.gguf", "ibm/granite:8b": "ollama://granite3.1-dense:8b", "merlinite": "huggingface://instructlab/merlinite-7b-lab-GGUF/merlinite-7b-lab-Q4_K_M.gguf", "merlinite-lab-7b": "huggingface://instructlab/merlinite-7b-lab-GGUF/merlinite-7b-lab-Q4_K_M.gguf", "merlinite-lab:7b": "huggingface://instructlab/merlinite-7b-lab-GGUF/merlinite-7b-lab-Q4_K_M.gguf", "merlinite:7b": "huggingface://instructlab/merlinite-7b-lab-GGUF/merlinite-7b-lab-Q4_K_M.gguf", "mistral": "huggingface://TheBloke/Mistral-7B-Instruct-v0.2-GGUF/mistral-7b-instruct-v0.2.Q4_K_M.gguf", "mistral:7b": "huggingface://TheBloke/Mistral-7B-Instruct-v0.2-GGUF/mistral-7b-instruct-v0.2.Q4_K_M.gguf", "mistral:7b-v1": "huggingface://TheBloke/Mistral-7B-Instruct-v0.1-GGUF/mistral-7b-instruct-v0.1.Q5_K_M.gguf", "mistral:7b-v2": "huggingface://TheBloke/Mistral-7B-Instruct-v0.2-GGUF/mistral-7b-instruct-v0.2.Q4_K_M.gguf", "mistral:7b-v3": "huggingface://MaziyarPanahi/Mistral-7B-Instruct-v0.3-GGUF/Mistral-7B-Instruct-v0.3.Q4_K_M.gguf", "mistral_code_16k": "huggingface://TheBloke/Mistral-7B-Code-16K-qlora-GGUF/mistral-7b-code-16k-qlora.Q4_K_M.gguf", "mistral_codealpaca": "huggingface://TheBloke/Mistral-7B-codealpaca-lora-GGUF/mistral-7b-codealpaca-lora.Q4_K_M.gguf", "mixtao": "huggingface://MaziyarPanahi/MixTAO-7Bx2-MoE-Instruct-v7.0-GGUF/MixTAO-7Bx2-MoE-Instruct-v7.0.Q4_K_M.gguf", "openchat": "huggingface://TheBloke/openchat-3.5-0106-GGUF/openchat-3.5-0106.Q4_K_M.gguf", "openorca": "huggingface://TheBloke/Mistral-7B-OpenOrca-GGUF/mistral-7b-openorca.Q4_K_M.gguf", "phi2": "huggingface://MaziyarPanahi/phi-2-GGUF/phi-2.Q4_K_M.gguf", "smollm:135m": "ollama://smollm:135m", "tiny": "ollama://tinyllama" }, "Files": [ "/usr/share/ramalama/shortnames.conf", "/home/dwalsh/.config/ramalama/shortnames.conf", ] }, "Store": "/home/dwalsh/.local/share/ramalama", "UseContainer": true, "Version": "0.7.5" }
-
Info with Podman engine.
$ ramalama info
Returns for example:
{ "Accelerator": "cuda", "Engine": { "Info": { "host": { "arch": "amd64", "buildahVersion": "1.39.4", "cgroupControllers": [ "cpu", "io", "memory", "pids" ], "cgroupManager": "systemd", "cgroupVersion": "v2", "conmon": { "package": "conmon-2.1.13-1.fc42.x86_64", "path": "/usr/bin/conmon", "version": "conmon version 2.1.13, commit: " }, "cpuUtilization": { "idlePercent": 97.36, "systemPercent": 0.64, "userPercent": 2 }, "cpus": 32, "databaseBackend": "sqlite", "distribution": { "distribution": "fedora", "variant": "workstation", "version": "42" }, "eventLogger": "journald", "freeLocks": 2043, "hostname": "danslaptop", "idMappings": { "gidmap": [ { "container_id": 0, "host_id": 3267, "size": 1 }, { "container_id": 1, "host_id": 524288, "size": 65536 } ], "uidmap": [ { "container_id": 0, "host_id": 3267, "size": 1 }, { "container_id": 1, "host_id": 524288, "size": 65536 } ] }, "kernel": "6.14.2-300.fc42.x86_64", "linkmode": "dynamic", "logDriver": "journald", "memFree": 65281908736, "memTotal": 134690979840, "networkBackend": "netavark", "networkBackendInfo": { "backend": "netavark", "dns": { "package": "aardvark-dns-1.14.0-1.fc42.x86_64", "path": "/usr/libexec/podman/aardvark-dns", "version": "aardvark-dns 1.14.0" }, "package": "netavark-1.14.1-1.fc42.x86_64", "path": "/usr/libexec/podman/netavark", "version": "netavark 1.14.1" }, "ociRuntime": { "name": "crun", "package": "crun-1.21-1.fc42.x86_64", "path": "/usr/bin/crun", "version": "crun version 1.21\ncommit: 10269840aa07fb7e6b7e1acff6198692d8ff5c88\nrundir: /run/user/3267/crun\nspec: 1.0.0\n+SYSTEMD +SELINUX +APPARMOR +CAP +SECCOMP +EBPF +CRIU +LIBKRUN +WASM:wasmedge +YAJL" }, "os": "linux", "pasta": { "executable": "/bin/pasta", "package": "passt-0^20250415.g2340bbf-1.fc42.x86_64", "version": "" }, "remoteSocket": { "exists": true, "path": "/run/user/3267/podman/podman.sock" }, "rootlessNetworkCmd": "pasta", "security": { "apparmorEnabled": false, "capabilities": "CAP_CHOWN,CAP_DAC_OVERRIDE,CAP_FOWNER,CAP_FSETID,CAP_KILL,CAP_NET_BIND_SERVICE,CAP_SETFCAP,CAP_SETGID,CAP_SETPCAP,CAP_SETUID,CAP_SYS_CHROOT", "rootless": true, "seccompEnabled": true, "seccompProfilePath": "/usr/share/containers/seccomp.json", "selinuxEnabled": true }, "serviceIsRemote": false, "slirp4netns": { "executable": "/bin/slirp4netns", "package": "slirp4netns-1.3.1-2.fc42.x86_64", "version": "slirp4netns version 1.3.1\ncommit: e5e368c4f5db6ae75c2fce786e31eef9da6bf236\nlibslirp: 4.8.0\nSLIRP_CONFIG_VERSION_MAX: 5\nlibseccomp: 2.5.5" }, "swapFree": 8589930496, "swapTotal": 8589930496, "uptime": "116h 35m 40.00s (Approximately 4.83 days)", "variant": "" }, "plugins": { "authorization": null, "log": [ "k8s-file", "none", "passthrough", "journald" ], "network": [ "bridge", "macvlan", "ipvlan" ], "volume": [ "local" ] }, "registries": { "search": [ "registry.fedoraproject.org", "registry.access.redhat.com", "docker.io" ] }, "store": { "configFile": "/home/dwalsh/.config/containers/storage.conf", "containerStore": { "number": 5, "paused": 0, "running": 0, "stopped": 5 }, "graphDriverName": "overlay", "graphOptions": {}, "graphRoot": "/home/dwalsh/.local/share/containers/storage", "graphRootAllocated": 2046687182848, "graphRootUsed": 399990419456, "graphStatus": { "Backing Filesystem": "btrfs", "Native Overlay Diff": "true", "Supports d_type": "true", "Supports shifting": "false", "Supports volatile": "true", "Using metacopy": "false" }, "imageCopyTmpDir": "/var/tmp", "imageStore": { "number": 297 }, "runRoot": "/run/user/3267/containers", "transientStore": false, "volumePath": "/home/dwalsh/.local/share/containers/storage/volumes" }, "version": { "APIVersion": "5.4.2", "BuildOrigin": "Fedora Project", "Built": 1743552000, "BuiltTime": "Tue Apr 1 19:00:00 2025", "GitCommit": "be85287fcf4590961614ee37be65eeb315e5d9ff", "GoVersion": "go1.24.1", "Os": "linux", "OsArch": "linux/amd64", "Version": "5.4.2" } }, "Name": "podman" }, "Image": "quay.io/ramalama/cuda:0.7", "Runtime": "llama.cpp", "Shortnames": { "Names": { "cerebrum": "huggingface://froggeric/Cerebrum-1.0-7b-GGUF/Cerebrum-1.0-7b-Q4_KS.gguf", "deepseek": "ollama://deepseek-r1", "dragon": "huggingface://llmware/dragon-mistral-7b-v0/dragon-mistral-7b-q4_k_m.gguf", "gemma3": "hf://bartowski/google_gemma-3-4b-it-GGUF/google_gemma-3-4b-it-IQ2_M.gguf", "gemma3:12b": "hf://bartowski/google_gemma-3-12b-it-GGUF/google_gemma-3-12b-it-IQ2_M.gguf", "gemma3:1b": "hf://bartowski/google_gemma-3-1b-it-GGUF/google_gemma-3-1b-it-IQ2_M.gguf", "gemma3:27b": "hf://bartowski/google_gemma-3-27b-it-GGUF/google_gemma-3-27b-it-IQ2_M.gguf", "gemma3:4b": "hf://bartowski/google_gemma-3-4b-it-GGUF/google_gemma-3-4b-it-IQ2_M.gguf", "granite": "ollama://granite3.1-dense", "granite-code": "hf://ibm-granite/granite-3b-code-base-2k-GGUF/granite-3b-code-base.Q4_K_M.gguf", "granite-code:20b": "hf://ibm-granite/granite-20b-code-base-8k-GGUF/granite-20b-code-base.Q4_K_M.gguf", "granite-code:34b": "hf://ibm-granite/granite-34b-code-base-8k-GGUF/granite-34b-code-base.Q4_K_M.gguf", "granite-code:3b": "hf://ibm-granite/granite-3b-code-base-2k-GGUF/granite-3b-code-base.Q4_K_M.gguf", "granite-code:8b": "hf://ibm-granite/granite-8b-code-base-4k-GGUF/granite-8b-code-base.Q4_K_M.gguf", "granite-lab-7b": "huggingface://instructlab/granite-7b-lab-GGUF/granite-7b-lab-Q4_K_M.gguf", "granite-lab-8b": "huggingface://ibm-granite/granite-8b-code-base-GGUF/granite-8b-code-base.Q4_K_M.gguf", "granite-lab:7b": "huggingface://instructlab/granite-7b-lab-GGUF/granite-7b-lab-Q4_K_M.gguf", "granite:2b": "ollama://granite3.1-dense:2b", "granite:7b": "huggingface://instructlab/granite-7b-lab-GGUF/granite-7b-lab-Q4_K_M.gguf", "granite:8b": "ollama://granite3.1-dense:8b", "hermes": "huggingface://NousResearch/Hermes-2-Pro-Mistral-7B-GGUF/Hermes-2-Pro-Mistral-7B.Q4_K_M.gguf", "ibm/granite": "ollama://granite3.1-dense:8b", "ibm/granite:2b": "ollama://granite3.1-dense:2b", "ibm/granite:7b": "huggingface://instructlab/granite-7b-lab-GGUF/granite-7b-lab-Q4_K_M.gguf", "ibm/granite:8b": "ollama://granite3.1-dense:8b", "merlinite": "huggingface://instructlab/merlinite-7b-lab-GGUF/merlinite-7b-lab-Q4_K_M.gguf", "merlinite-lab-7b": "huggingface://instructlab/merlinite-7b-lab-GGUF/merlinite-7b-lab-Q4_K_M.gguf", "merlinite-lab:7b": "huggingface://instructlab/merlinite-7b-lab-GGUF/merlinite-7b-lab-Q4_K_M.gguf", "merlinite:7b": "huggingface://instructlab/merlinite-7b-lab-GGUF/merlinite-7b-lab-Q4_K_M.gguf", "mistral": "huggingface://TheBloke/Mistral-7B-Instruct-v0.2-GGUF/mistral-7b-instruct-v0.2.Q4_K_M.gguf", "mistral:7b": "huggingface://TheBloke/Mistral-7B-Instruct-v0.2-GGUF/mistral-7b-instruct-v0.2.Q4_K_M.gguf", "mistral:7b-v1": "huggingface://TheBloke/Mistral-7B-Instruct-v0.1-GGUF/mistral-7b-instruct-v0.1.Q5_K_M.gguf", "mistral:7b-v2": "huggingface://TheBloke/Mistral-7B-Instruct-v0.2-GGUF/mistral-7b-instruct-v0.2.Q4_K_M.gguf", "mistral:7b-v3": "huggingface://MaziyarPanahi/Mistral-7B-Instruct-v0.3-GGUF/Mistral-7B-Instruct-v0.3.Q4_K_M.gguf", "mistral_code_16k": "huggingface://TheBloke/Mistral-7B-Code-16K-qlora-GGUF/mistral-7b-code-16k-qlora.Q4_K_M.gguf", "mistral_codealpaca": "huggingface://TheBloke/Mistral-7B-codealpaca-lora-GGUF/mistral-7b-codealpaca-lora.Q4_K_M.gguf", "mixtao": "huggingface://MaziyarPanahi/MixTAO-7Bx2-MoE-Instruct-v7.0-GGUF/MixTAO-7Bx2-MoE-Instruct-v7.0.Q4_K_M.gguf", "openchat": "huggingface://TheBloke/openchat-3.5-0106-GGUF/openchat-3.5-0106.Q4_K_M.gguf", "openorca": "huggingface://TheBloke/Mistral-7B-OpenOrca-GGUF/mistral-7b-openorca.Q4_K_M.gguf", "phi2": "huggingface://MaziyarPanahi/phi-2-GGUF/phi-2.Q4_K_M.gguf", "smollm:135m": "ollama://smollm:135m", "tiny": "ollama://tinyllama" }, "Files": [ "/usr/share/ramalama/shortnames.conf", "/home/dwalsh/.config/ramalama/shortnames.conf", ] }, "Store": "/home/dwalsh/.local/share/ramalama", "UseContainer": true, "Version": "0.7.5" }
-
Using jq to print specific `ramalama info` content.
$ ramalama info | jq .Shortnames.Names.mixtao
Returns for example:
"huggingface://MaziyarPanahi/MixTAO-7Bx2-MoE-Instruct-v7.0-GGUF/MixTAO-7Bx2-MoE-Instruct-v7.0.Q4_K_M.gguf"
-
Inspect the smollm:135m model for basic information.
$ ramalama inspect smollm:135m
Returns for example:
smollm:135m Path: /var/lib/ramalama/models/ollama/smollm:135m Registry: ollama Format: GGUF Version: 3 Endianness: little Metadata: 39 entries Tensors: 272 entries
-
Inspect the smollm:135m model for all information in json format.
$ ramalama inspect smollm:135m --all --json
Returns for example:
{ "Name": "smollm:135m", "Path": "/home/mengel/.local/share/ramalama/models/ollama/smollm:135m", "Registry": "ollama", "Format": "GGUF", "Version": 3, "LittleEndian": true, "Metadata": { "general.architecture": "llama", "general.base_model.0.name": "SmolLM 135M", "general.base_model.0.organization": "HuggingFaceTB", "general.base_model.0.repo_url": "https://huggingface.co/HuggingFaceTB/SmolLM-135M", ... }, "Tensors": [ { "dimensions": [ 576, 49152 ], "n_dimensions": 2, "name": "token_embd.weight", "offset": 0, "type": 8 }, ... ] }
-
You can `list` all models pulled into local storage.
$ ramalama list
Returns for example:
NAME MODIFIED SIZE ollama://smollm:135m 16 hours ago 5.5M huggingface://afrideva/Tiny-Vicuna-1B-GGUF/tiny-vicuna-1b.q2_k.gguf 14 hours ago 460M ollama://moondream:latest 6 days ago 791M ollama://phi4:latest 6 days ago 8.43 GB ollama://tinyllama:latest 1 week ago 608.16 MB ollama://granite3-moe:3b 1 week ago 1.92 GB ollama://granite3-moe:latest 3 months ago 1.92 GB ollama://llama3.1:8b 2 months ago 4.34 GB ollama://llama3.1:latest 2 months ago 4.34 GB
-
Log in to quay.io/username oci registry
$ export RAMALAMA_TRANSPORT=quay.io/username $ ramalama login -u username
-
Log in to ollama registry
$ export RAMALAMA_TRANSPORT=ollama $ ramalama login
-
Log in to huggingface registry
$ export RAMALAMA_TRANSPORT=huggingface $ ramalama login --token=XYZ
Logging in to Hugging Face requires the
huggingface-cli tool
. For installation and usage instructions, see the documentation of the Hugging Face command line interface.
-
Log out from quay.io/username oci repository
$ ramalama logout quay.io/username
-
Log out from ollama repository
$ ramalama logout ollama
-
Log out from huggingface
$ ramalama logout huggingface
-
Calculate the perplexity of an AI Model.
Perplexity measures how well the model can predict the next token with lower values being better
$ ramalama perplexity granite-moe3
-
Pull a model
You can
pull
a model using thepull
command. By default, it pulls from the Ollama registry.$ ramalama pull granite3-moe
-
Push specified AI Model (OCI-only at present)
A model can from RamaLama model storage in Huggingface, Ollama, or OCI Model format. The model can also just be a model stored on disk
$ ramalama push oci://quay.io/rhatdan/tiny:latest
Generate and convert Retrieval Augmented Generation (RAG) data from provided documents into an OCI Image.
Note
this command does not work without a container engine.
-
Generate RAG data from provided documents and convert into an OCI Image.
This command uses a specific container image containing the docling tool to convert the specified content into a RAG vector database. If the image does not exists locally RamaLama will pull the image down and launch a container to process the data.
Positional arguments:
PATH Files/Directory containing PDF, DOCX, PPTX, XLSX, HTML, AsciiDoc & Markdown formatted files to be processed. Can be specified multiple times.
IMAGE OCI Image name to contain processed rag data
./bin/ramalama rag ./README.md https://github.com/containers/podman/blob/main/README.md quay.io/rhatdan/myrag 100% |███████████████████████████████████████████████████████| 114.00 KB/ 0.00 B 922.89 KB/s 59m 59s Building quay.io/ramalama/myrag... adding vectordb... c857ebc65c641084b34e39b740fdb6a2d9d2d97be320e6aa9439ed0ab8780fe0
-
Specify one or more AI Models to be removed from local storage.
$ ramalama rm ollama://tinyllama
-
Remove all AI Models from local storage.
$ ramalama rm --all
-
Run a chatbot on a model using the run command. By default, it pulls from the Ollama registry.
Note: RamaLama will inspect your machine for native GPU support and then will use a container engine like Podman to pull an OCI container image with the appropriate code and libraries to run the AI Model. This can take a long time to setup, but only on the first run.
$ ramalama run instructlab/merlinite-7b-lab
-
After the initial container image has been downloaded, you can interact with different models using the container image.
$ ramalama run granite3-moe
Returns for example:
> Write a hello world application in python print("Hello World")
-
In a different terminal window see the running podman container.
$ podman ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES 91df4a39a360 quay.io/ramalama/ramalama:latest /home/dwalsh/rama... 4 minutes ago Up 4 minutes gifted_volhard
-
Serve a model and connect via a browser.
$ ramalama serve llama3
When the web UI is enabled, you can connect via your browser at: 127.0.0.1:< port > The default serving port will be 8080 if available, otherwise a free random port in the range 8081-8090. If you wish, you can specify a port to use with --port/-p.
-
Run two AI Models at the same time. Notice both are running within Podman Containers.
$ ramalama serve -d -p 8080 --name mymodel ollama://smollm:135m 09b0e0d26ed28a8418fb5cd0da641376a08c435063317e89cf8f5336baf35cfa $ ramalama serve -d -n example --port 8081 oci://quay.io/mmortari/gguf-py-example/v1/example.gguf 3f64927f11a5da5ded7048b226fbe1362ee399021f5e8058c73949a677b6ac9c $ podman ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES 09b0e0d26ed2 quay.io/ramalama/ramalama:latest /usr/bin/ramalama... 32 seconds ago Up 32 seconds 0.0.0.0:8081->8081/tcp ramalama_sTLNkijNNP 3f64927f11a5 quay.io/ramalama/ramalama:latest /usr/bin/ramalama... 17 seconds ago Up 17 seconds 0.0.0.0:8082->8082/tcp ramalama_YMPQvJxN97
-
To disable the web UI, use the `--webui` off flag.
$ ramalama serve --webui off llama3
-
Stop a running model if it is running in a container.
$ ramalama stop mymodel
-
Stop all running models running in containers.
$ ramalama stop --all
-
Print the version of RamaLama.
$ ramalama version
Returns for example:
ramalama version 1.2.3
Command | Description |
---|---|
ramalama(1) | primary RamaLama man page |
ramalama-bench(1) | benchmark specified AI Model |
ramalama-containers(1) | list all RamaLama containers |
ramalama-convert(1) | convert AI Model from local storage to OCI Image |
ramalama-info(1) | display RamaLama configuration information |
ramalama-inspect(1) | inspect the specified AI Model |
ramalama-list(1) | list all downloaded AI Models |
ramalama-login(1) | login to remote registry |
ramalama-logout(1) | logout from remote registry |
ramalama-perplexity(1) | calculate perplexity for specified AI Model |
ramalama-pull(1) | pull AI Model from Model registry to local storage |
ramalama-push(1) | push AI Model from local storage to remote registry |
ramalama-rag(1) | generate and convert Retrieval Augmented Generation (RAG) data from provided documents into an OCI Image |
ramalama-rm(1) | remove AI Model from local storage |
ramalama-run(1) | run specified AI Model as a chatbot |
ramalama-serve(1) | serve REST API on specified AI Model |
ramalama-stop(1) | stop named container that is running AI Model |
ramalama-version(1) | display version of RamaLama |
+---------------------------+
| |
| ramalama run granite3-moe |
| |
+-------+-------------------+
|
|
| +------------------+ +------------------+
| | Pull inferencing | | Pull model layer |
+-----------| runtime (cuda) |---------->| granite3-moe |
+------------------+ +------------------+
| Repo options: |
+-+-------+------+-+
| | |
v v v
+---------+ +------+ +----------+
| Hugging | | OCI | | Ollama |
| Face | | | | Registry |
+-------+-+ +---+--+ +-+--------+
| | |
v v v
+------------------+
| Start with |
| cuda runtime |
| and |
| granite3-moe |
+------------------+
Regarding this alpha, everything is under development, so expect breaking changes, luckily it's easy to reset everything and reinstall:
rm -rf /var/lib/ramalama # only required if running as root user
rm -rf $HOME/.local/share/ramalama
and install again.
- On certain versions of Python on macOS, certificates may not installed correctly, potentially causing SSL errors (e.g., when accessing huggingface.co). To resolve this, run the
Install Certificates
command, typically as follows:
/Applications/Python 3.x/Install Certificates.command
This project wouldn't be possible without the help of other projects like:
so if you like this tool, give some of these repos a ⭐, and hey, give us a ⭐ too while you are at it.
For general questions and discussion, please use RamaLama's
For discussions around issues/bugs and features, you can use the GitHub Issues and PRs tracking system.
Open to contributors